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ABSTRACT 

This paper proposes an ideal regularized composite kernel 
(IRCK) framework for hyperspectral images (HSI) classifica­
tion. In learning a composite kernel, IRCK exploits spectral 
information, spatial information, and label information simul­
taneously. It incorporates the labels into standard spectral and 
spatial kernels by means of ideal kernel according to a regu­
larization kernel learning framework, which captures both the 
sample similarity and label similarity and makes the resulting 
kernel more appropriate for HSI classification tasks. With the 
ideal regularization, the kernel learning problem has a simple 
analytical solution and is very easy to implement. The ide­
al regularization can be used to improve and refine state-of­
the-art kernels, including spectral kernels, spatial kernels and 
spectral-spatial composite kernels. The effectiveness of the 
proposed IRCK is validated on the benchmark hyperspectral 
data set: Indian Pines. Experimental results show the supe­
riority of our ideal regularized composite kernel method over 
the classical kernel methods. 

Index Terms- Hyperspectral image classification, ideal 
kernel, regularization, composite kernel 

1. INTRODUCTION 

Various hyperspectral image (HSI) classification methods 
have been developed in the past decades [1]. Traditional HSI 
classification methods usually discriminate and classify the 
pixels by measuring the similarity among different spectral 
curves. The key to success for these classification methods is 
to learn an accurate similarity metric between samples. 

In order to learn a desirable similarity metric, kernel func­
tions and kernel methods are introduced into HSI classifica­
tion and have shown good classification performance [2]. K­
ernel methods can solve the high-dimensional HSI classifi­
cation problem effectively and are easy to measure the lin­
ear/nonlinear relations between hyperspectral samples in Re­
producing Kernel Hilbert Space (RKHS) [2]. In the HSI c1as-
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sification, there are mainly three kind of kernels: spectral k­
ernels, spatial kernels and spectral-spatial composite kernels. 
The commonly used spectral kernels are Gaussian radial ba­
sis function (RBF), polynomial, and linear kernels [2] . Spec­
tral kernels are constructed based on the spectral information, 
while spatial kernels use the spatial information. The repre­
sentative spatial kernels are spatial local mean or standard de­
viation feature based kernel [3], mean map kernel [4], and re­
gion kernel [5]. Joint consideration of the spectral and spatial 
textural information, four different spatial-spectral compos­
ite kernels are proposed [3], including stacked kernel, direc­
t summation kernel, weighted summation kernel , and cross­
information kernel. Similarly, sample-cluster composite ker­
nels [4], spatial and spectral activation-function-based com­
posite kernels [6] , generalized composite kernels [7], have 
been proposed for the spectral-spatial classification of HSIs. 

However, almost all of the above-mentioned kernel-based 
methods learn the standard kernels from the samples alone 
without considering the labels of a data set. In fact, the la­
bel information can be used for kernel learning and to refine 
the standard kernels. Exploiting the labels explicitly, an ide­
al kernel is constructed [8]. It assigns the sample pair with 
a kernel value 1 if they belong to the same class, and a ker­
nel value 0 if they belong to the different classes. The ideal 
kernel incorporates the label similarities. Based on the ideal 
kernel, an ideal regularization strategy is recently proposed to 
learn a data-dependent kernel from the labels and shows good 
performance [9, 10]. 

In this paper, we propose an ideal regularized composite 
kernel (IRCK) framework for spatial-spectral classification of 
HSIs. In IRCK, we consider the spectral and spatial kernels as 
the initial kernels, and employ an ideal regularization to refine 
the initial kernels by incorporating the labels into the standard 
spectral and spatial kernels. Finally, the regularized spatial 
and spectral kernels are combined to form a composite kernel 
for the HSI classification. The proposed IRCK algorithm has 
the following characteristics: 

(1) It is simple and easy to implement. The ideal regu­
larization problem has an analytical solution, and the resulted 
kernel can be expressed as the summation of the standard k­
ernel and regularized kernels. 

(2) It is quite effective. The ideal regularization improves 
the standard kernels. Because of the spectral variability of 
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HSI samples, the same material may have different spec­
tral curves and different materials may have similar spectral 
curves. Without using the label information, the standard 
kernel is extremely difficult to handle these problems. That 
is, the standard kernel is inaccurate in measuring the simi­
larity between samples using only the data itself. However, 
the ideal regularization can solve these problems at a certain 
extent by incorporating the label information into the stan­
dard kernel. It embodies both the sample similarity and label 
similarity. 

(3) It is less sensitive to kernel parameters than general 
composite kernels. 

(4) It is easily adapted to different kinds of kernels (spec­
tral , spatial and composite kernels), and different kernel­
based classification algorithms (SVMs and extreme learning 
machines (ELMs)). 

2. IDEAL REGULARIZED KERNEL 

2.1. Ideal kernel 

Given a set of training samples,.[ = {(Xl , Yl) ," " (xe, Ye)), 
the ideal kernel [11,8] is defined as: 

Yi = Yj , 
Yi # Yj · 

(1) 

The ideal kernel leads to a perfect classification inspired from 
an "oracle": two samples X i and X j should be considered as 
"similar" (with kernel value 1) if and only if they belong to the 
same class (Yi = Yj ) [11, 8]. In other words, the ideal kernel 
incorporates the label information and reflects the similarity 
between labels. 

2.2. Ideal regularization 

In order to embed the label information into a standard kernel 
Ko and to learn a desirable kernel K , an ideal regularization 
kernel learning framework is proposed [9, 10]: 

min D(K, Ko) + , O(K) 
K ::;O 

(2) 

where DC, .) denotes the divergence between the matrices, 
o ( .) is a regularization term, , is a tradeoff parameter, K ~ 0 
means K is a symmetric positive semidefinite matrix. The 
divergence can be chosen as the von Neumann divergence: 

D(K, Ko) = tr(K log K - KlogKo - K + Ko) (3) 

where tr(A) denotes the trace of matrix A. The regularization 
term can be defined as: O(K) = - tr(KT) , which encodes 
the label information of the given data samples [9, 10]. Then, 
the solution of (2) is: 

K * = exp(logKo + , T) = Ko 8 exp(,T) (4) 
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where 8 denotes the dot product between two matrices. 
The Taylor expansion of (4) is: 

2 

K * = Ko + , Ko 8 T + LKo 8 T2 + .. . (5) 
2! 

The first term on the right hand of the equation is the origi­
nal kernel, and the rest terms on the right hand consist of the 
regularized kernels. It demonstrates that the ideal regularized 
kernel is a linear combination of the original kernel and reg­
ularized kernels. When , = 0, the ideal regularized kernel is 
reduced to the original kernel. When , is very small, only the 
first order regularization term Ko 8 T plays a role in the ideal 
regularization. Because T equals to 1 only for sample pairs 
belonging to the same class, ideal regularization enhances the 
kernel similarity values on sample pairs in the same class. In 
other words, ideal regularization exploits the sample similari­
ty in Ko , and meanwhile uses the label similarity in T to make 
the samples in the same class more similar. 

From the equation (4), we can see that the ideal regular­
ized kernel is a dot product between the original kernel and an 
exponential ideal kernel. The computation of ideal kernel and 
exponential ideal kernel are relatively simple, so the compu­
tational complexity of ideal regularized kernel is almost the 
same as that of original kernel. 

2.3. Ideal regularization composite kernel 

In order to learn an ideal spectral kernel K W and an ideal 
spatial kernel K S and hence an ideal spectral-spatial kernel 
K WS = (1 - J-L )K W + J-LK s, we propose the following ideal 
regularization composite kernel (IReK) optimization frame­
work: 

min D(KW, K Wo ) + D(KS, KSo) + , O(KWS) 
K W,K s t O 

= tr(KW log K W - K W log K WO _ K W + K Wo ) 
+tr(K S logK S - K S logKSO _ K S + K SO) 

-,((I - J-L) tr(KWT) + J-L tr(K ST )) (6) 

The optimal solution of (6) is: 

K W = K WO 8 expb (l - J-L)T) 
K S = K SO 8 expbJ-LT ) 

And the composite ideal regularized kernel is: 

K WS = (1 - J-L)KW + J-LK s 

= (1 - J-L)KWO 8 expb (1 - J-L)T) 

+ J-LK sO 8 expbJ-LT) 

(7) 

(8) 

(9) 

If ideal spatial kernel is the mean map kernel K m learned 
from the initial mean map kernel K m O [4], the composite k­
ernel is: 

(10) 



3. EXPERIMENTAL RESULTS 

The Indian Pines data set acquired by the AVIRIS sensor in 
1992 is used in the experiment. The image scene contains 
with 145 x 145 pixels and 220 spectral bands, where 20 chan­
nels were discarded because of atmospheric affection. There 
are 16 classes in the data. The total number of samples is 
10249 ranging from 20 to 2455 in each class. 

The proposed ideal regularized kernel classification method 
is compared with the classical kernel classification methods, 
including spectral SVM (KW), spatial SVM (KS), spectral­
spatial SVM (SVM with composite kernel, SVM-CK, K WS ) 
[3], SVM with mean map kernel (Km ), and SVM with com­
posite mean map kernel (Kwm ) [4] . The classification overall 
accuracy (OA) on the testing set is recoded. All data are 
nonnalized to have a unit £2 norm. Gaussian kernel is used 
in all SVM algorithms. For the spatial-based methods, 9 x 9 
neighborhood window is used. 

We investigate the performance of the proposed ideal reg­
ularized composite kernel methods under different number­
s of labeled samples per class. We randomly choose M = 
5, 10, 15, 20, 25,30,35, 40 samples from each class to fonn 
the training set, respectively (For the class less than M sam­
ples, half of total samples are chosen). The remaining sam­
ples consist of testing set. The classification overall accura­
cies under different numbers of training samples are shown in 
Table 1. From results in the table, we can conclude: 

(1) With the increase of training samples, OAs for all al­
gorithms are greatly improved. The proposed ideal regular­
ized composite kernel methods show a significant improve­
ment over the spectral, spatial, and spectral-spatial SVMs. 

(2) The ideal regularized kernels improve the correspond­
ing original kernels. It demonstrates that the ideal regulariza­
tion can enhance the kernel discriminant ability. 

(3) The ideal regularized composite mean map kernel 
(Kwm_IR) provides the best classification results than oth­
er methods. Compared with the original composite mean 
map kernel (Km -Ori), K wm _IR increases the OA of different 
number of labeled samples by 3.7% in average. 

(4) The proposed ideal regularized kernel K wm_IR is 
quite effective in the case with limited training samples, see­
ing the results in the case of M = 5 or M = 10. When the 
number of labeled samples is limited, the kernel similarity 
measured by samples is insufficient to reflect the class dis­
crepancy. In this case, the label similarity in ideal kernel can 
assist the sample similarity to obtain a reliable metric and 
desirable classification result. 

(5) For the spectral SVM (KW), the ideal regularized k­
ernel has little or no improvements than the original kernel. 
However, for the spatial SVM (KS), the corresponding ideal 
regularized kernel largely improves the original kernel. Be­
cause the ideal regularization enhances the kernel similarity 
on samples in the same class, the spectral kernel similarity is 
relatively inaccurate than spatial kernel similarity, ideal regu-
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larization on spectral kernel is less effective than ideal regu­
larization on spatial kernel. 

In the following, we investigate the sensitivity of the pro­
posed algorithm on different parameters. We take the SVM­
CK-IR algorithm as an example, and choose 15 and 100 la­
beled samples per class to fonn the training set and validating 
set, respectively. We first investigate the effect of regular­
ization parameter 'Y on SVM-CK-IR. The OAs versus 'Y are 
shown in Fig. 1, where the proposed ideal regularized kernel 
method provides stable results over a wide range of regular­
ization parameters. Then, we analysis the effect of kernel pa­
rameters. In SVM-CK, there are two kernel parameters: spa­
tial RBF kernel parameter 0" S and spectral RBF kernel param­
eter O"w . The OAs of SVM-CK and SVM-CK-IR versus spa­
tial and spectral kernel parameters are shown in Fig. 2. From 
the figure, it can be clearly seen that SVM-CK-IR is less sen­
sitive to kernel parameters than the original SVM-CK. The o­
riginal SVM-CK achieves the best OA at a narrow band while 
the proposed SVM-CK-IR shows good performance over a 
wide range of spatial and spectral kernel parameters. The 
rationality and veracity of kernel function (ideal regularized 
kernel) can reduce the dependence on the kernel parameters. 

92 

91 

90 

~ 89 
~ § 88 

:: 87 
ji! 
go: 86 
0 

85 

84 

83 
- 6 - 5 -4 - 3 - 2 -1 

log1O(Y) 

Fig. 1. OA versus regularization parameter 'Y for SVM-CK­
IR 

o· 

Fig. 2. OA versus spatial and spectral kernel parameters O"w 

and O"s for SVM-CK (a) and SVM-CK-IR (b). 



Table 1. Classification accuracies (%) under different number of labeled samples. 

K W K S K WS K m K wm 

M 
Ori IR Ori IR Ori IR Ori IR Ori IR 

5 48.16± 2.66 48.13± 2.61 61.77± 2.92 68.79± 2.83 62.1l±3.56 69.97± 3.48 66.96± 3.73 69.82± 4.01 67.35± 3.59 70.26± 3.87 

10 55.66± 2.27 56.2 l±2.44 72.57± 3.44 79.09± 1.87 73.25± 3.25 81.03± l.80 77.22± 2.34 81.3 l±2.48 77.8 l±2.23 82.07±2.51 

15 60.35± 1.53 61.30± l.23 78.33± 2.91 82.59± 2.04 78.6 l±2.47 84.98± l.94 82.70± 2.08 86.22± 1.94 83.3 l±2.20 86.94± 2.12 

20 63.13± 1.30 64.94± 1.38 82.04± 0.73 86.55± 1.78 82.32± 0.87 89.33± l.57 86.94± 1.26 91.16± 1.71 87.36± 1.l9 92.05± 1.77 

25 66.48± 1.86 68.04± l.61 83.07± 1.55 87.73± 1.39 83.66± 1.31 89.85± 0.85 87.88± 1.45 91.53± 1.31 88.28± 1.35 92.23± 1.21 

30 67.84± l.62 68.72± l.67 86.2 l± l.60 89.57± 1.36 86.48± l.59 92.13± l.42 90.27± l.66 93.57± l.20 90.8 l± l.65 94.45± 1.41 

35 69.67± l.91 71.23± 2.06 86.90± l.57 89.88± l.56 87.99± l.27 93.18± 0.88 91.87± l.53 94.76± l.04 92.46± 1.44 95.65± O.94 

40 71.08± 0.81 72.40± 0.99 88.3 l±1.36 89.08± 3.18 89.27± 1.36 94.20± 0.66 92.60± 1.30 95.18± 0.67 93.19± l.09 96.07±O.67 

4. CONCLUSION 

In this paper, we have proposed an ideal regularized compos­
ite kernel (lRCK) framework for the HSI classification. D­
ifferent from traditional kernel learning methods, IRCK cap­
tures both the sample similarity and label similarity by incor­
porating the labels into standard spectral and spatial kernels. 
It exploits spectral information, spatial information, and la­
bel information simultaneously. The proposed IRCK has a 
simple analytical solution and is very easy to implement. Ex­
perimental results on Indian Pines data set have shown the 
superiority of the proposed algorithm. 
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